II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

BASIC THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Explain the concept of macroscopic and microscopic view point as applied to the study of thermodynamics.	L2	CO1	7 M
	b)	Show that heat is a path function, and not a property.	L2	CO1	7 M
OR					
2	a)	Explain the perpetual motion machine of first kind.	L2	CO1	7 M
	b)	$0.2 \mathrm{~m}^{3}$ of an ideal gas at a pressure of 2 MPa and 600 K is expanded isothermally to 5 times the initial volume. It is then cooled to 300 K at constant volume and then compressed back polytropically to its initial state. Determine the network done and heat transfer during the cycle.	L3	CO1	7 M

UNIT-II

3	a)	Explain the limitations of first law of thermodynamics.	L3	CO 2	7 M
	b)	In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific volume of the fluid, pressure, and velocity at the inlet are $0.37 \mathrm{~m}^{3} / \mathrm{kg}, 600 \mathrm{kPa}$, and 16 m / s. The inlet is 32 m above the floor, and the discharge pipe is at floor level. The discharge conditions are $0.62 \mathrm{~m}^{3} / \mathrm{kg}, 100$ kPa , and $270 \mathrm{~m} / \mathrm{s}$. In flowing through this apparatus, does the specific internal energy increase or decrease, and by how much?	L3	CO 2	7 M

OR

| 4 | a) | State the Kelvin-Planck and Clausius
 statements of the second law of
 thermodynamics, and establish the
 equivalence between them. | CO2 | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b) | A domestic food freezer maintains a
 temperature of $-15{ }^{\circ} \mathrm{C}$. The ambient air
 temperature is $30^{\circ} \mathrm{C}$. If heat leaks into the
 freezer at the continuous rate of $1.75 \mathrm{~kJ} / \mathrm{s}$.
 What is the least power necessary to pump
 this heat out continuously? | CO 2 | 7 M | |

UNIT-III

a)Show that COP of a heat pump is greater than COP of a refrigerator by unity.	L3	CO3	7 M

	b)	A reversible heat engine is supplied 900 kJ of heat from a heat source at 500 K . The engine develops 300 kJ of net work and rejects heat to two heat sinks at 400 K and 300 K. Determine the engine thermal efficiency and magnitude of heat interaction with each of the sink.	L3	CO3	7 M
OR					
6	a)	Explain the concept of Clausius inequality.	L3	CO3	7 M
	b)	5 kg of air expands isothermally from $1 \mathrm{~m}^{3}$ to $5 \mathrm{~m}^{3}$. Assuming air to be an ideal gas with constant specific heats, compute the change in entropy of air during the process.	L3	CO3	7 M
UNIT-IV					
7	a)	Explain availability of a non flow or closed system.	L3	CO4	7 M
	b)	Air expands through a turbine from 500 $\mathrm{kPa}, 520{ }^{\circ} \mathrm{C}$ to $100 \mathrm{kPa}, 300{ }^{\circ} \mathrm{C}$. During expansion $10 \mathrm{~kJ} / \mathrm{kg}$ of heat is lost to the surroundings which is at $98 \mathrm{kPa}, 20^{\circ} \mathrm{C}$. Neglecting the K.E and P.E. changes, determine per kg of air (i) the decrease in availability, (ii) the maximum work and (iii) the irreversibility. For air take $\mathrm{C}_{\mathrm{p}}=1.005$ $\mathrm{kJ} / \mathrm{kgK}, \mathrm{h}=\mathrm{C}_{\mathrm{p}} \mathrm{T}$ where C_{p} is constant and $\mathrm{pV}=\mathrm{mRT}$.	L3	CO4	7 M
OR					
8	a)	Explain the changes in enthalpy during formation of steam.	L3	CO4	7 M

	b)	A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquid present is 9 kg . Find the pressure, the mass, the specific volume, the enthalpy, the entropy, and the internal energy.	L3	CO 4	7 M
UNIT-V					
9		w the P-V and T-s diagrams of Diesel cycle derive an expression for thermal efficiency.	L3	CO5	14 M
OR					
10	$\begin{aligned} & \hline \text { In a } \\ & \text { ratio } \\ & \text { com } \\ & \text { pres } \\ & \text { temp } \\ & 1480 \\ & \text { heat } \end{aligned}$ effic	an air standard diesel cycle, the compression is 16 , and at the beginning of isentropic mpression, the temperature is $15{ }^{\circ} \mathrm{C}$ and the ssure is 0.1 MPa . Heat is added until the perature at the end of the constant pressure is $8{ }^{\circ} \mathrm{C}$. Calculate (i) the cut-off ratio, (ii) the supplied per kg of air, (iii) the cycle ciency and (iv) the mean effective pressure.	L3	CO5	14 M

