II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

BASIC THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL –	Blooms	Level

CO – Course Outcome

			BL	СО	Max.
					Marks
UNIT-I					
1	a)	Explain the concept of macroscopic and	L2	CO1	7 M
		microscopic view point as applied to the			
		study of thermodynamics.			
	b)	Show that heat is a path function, and not a	L2	CO1	7 M
		property.			
OR					
2	a)	Explain the perpetual motion machine of	L2	CO1	7 M
		first kind.			
	b)	0.2 m^3 of an ideal gas at a pressure of	L3	CO1	7 M
		2 MPa and 600 K is expanded isothermally			
		to 5 times the initial volume. It is then			
		cooled to 300 K at constant volume and then			
		compressed back polytropically to its initial			
		state. Determine the network done and heat			
		transfer during the cycle.			

UNIT-II					
3	a)	Explain the limitations of first law of	L3	CO2	7 M
		thermodynamics.			
	b)	In a steady flow apparatus, 135 kJ of work	L3	CO2	7 M
		is done by each kg of fluid. The specific			
		volume of the fluid, pressure, and velocity			
		at the inlet are 0.37 m ³ /kg, 600 kPa, and 16			
		m/s. The inlet is 32 m above the floor, and			
		the discharge pipe is at floor level. The			
		discharge conditions are 0.62 m^3/kg , 100			
		kPa, and 270 m/s. In flowing through this			
		apparatus, does the specific internal energy			
		increase or decrease, and by how much?			
	T	OR			
4	a)	State the Kelvin-Planck and Clausius	L3	CO2	7 M
		statements of the second law of			
		thermodynamics, and establish the			
		equivalence between them.			
	b)	A domestic food freezer maintains a	L3	CO2	7 M
		temperature of -15 °C. The ambient air			
		temperature is 30 °C. If heat leaks into the			
		freezer at the continuous rate of 1.75 kJ/s.			
		What is the least power necessary to pump			
		this heat out continuously?			
		UNIT-III			
5	a)	Show that COP of a heat pump is greater	L3	CO3	7 M
		than COP of a refrigerator by unity.			

	1 \		тo	GOA	7 7 6
	b)	A reversible heat engine is supplied 900 kJ	L3	CO3	7 M
		of heat from a heat source at 500 K. The			
		engine develops 300 kJ of net work and			
		rejects heat to two heat sinks at 400 K and			
		300 K. Determine the engine thermal			
		efficiency and magnitude of heat interaction			
		with each of the sink.			
	I	OR		11	
6	a)	Explain the concept of Clausius inequality.	L3	CO3	7 M
	b)	5 kg of air expands isothermally from $1m^3$	L3	CO3	7 M
		to 5 m^3 . Assuming air to be an ideal gas			
		with constant specific heats, compute the			
		change in entropy of air during the process.			
	L			<u> </u>	
		UNIT-IV			
7	a)	Explain availability of a non flow or closed	L3	CO4	7 M
		system.			
	b)	Air expands through a turbine from 500	L3	CO4	7 M
		kPa, 520 °C to 100 kPa, 300 °C. During			
		expansion 10 kJ/kg of heat is lost to the			
		surroundings which is at 98 kPa, 20°C.			
		Neglecting the K.E and P.E. changes,			
		determine per kg of air (i) the decrease in			
		availability, (ii) the maximum work and			
		(iii) the irreversibility. For air take $C_p=1.005$			
		kJ/kgK, $h=C_pT$ where C_p is constant and			
		pV=mRT.			
		OR			
8	a)	Explain the changes in enthalpy during	L3	CO4	7 M
		formation of steam.			

	b) A vessel of volume 0.04 m ³ contains a mixture of saturated water steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find the pressure, the	L ; ;	CO4	7 M			
	mass, the specific volume, the enthalpy, the entropy, and the internal energy.	;					
	UNIT-V						
9	Draw the P-V and T-s diagrams of Diesel cycle	L3	CO5	14 M			
	and derive an expression for thermal efficiency.						
	OR						
10	In an air standard diesel cycle, the compression	L3	CO5	14 M			
	ratio is 16, and at the beginning of isentropic	;					
	compression, the temperature is 15 °C and the						
	pressure is 0.1 MPa. Heat is added until the	;					
	temperature at the end of the constant pressure is						
	1480 °C. Calculate (i) the cut-off ratio, (ii) the	;					
	heat supplied per kg of air, (iii) the cycle	;					
	efficiency and (iv) the mean effective pressure.						